题目内容
(2008•湖北模拟)已知数列{an}满足2a1+22a2+23a3+…+2nan=4n-1.
(1)求{an}的通项;
(2)设bn=
,求{bn}的前项和.
(1)求{an}的通项;
(2)设bn=
| 1 | a2n |
分析:(1)由2a1+22a2+23a3+…+2nan=4n-1n≥2,2a1+22a2+23a3+…+2n-1an-1=4n-1-1,知2nan=4n-4n-1=3•4n-1,当n≥2时,an=
•2n,由此能求出{an}的通项.
(2)由bn=
=
=
•(
)2n=
(
)n,由此能求出{bn}的前项和.
| 3 |
| 4 |
(2)由bn=
| 1 |
| a2n |
| 1 | ||
|
| 4 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
| 1 |
| 4 |
解答:解(1)∵2a1+22a2+23a3+…+2nan=4n-1n≥2,
2a1+22a2+23a3+…+2n-1an-1=4n-1-1,
∴2nan=4n-4n-1=3•4n-1
∴当n≥2时,an=
•2n,
又n=1时 2a1=41-1得a1=3/2,
∴an=
•2n(6分)
(2)∵bn=
=
=
•(
)2n=
(
)n(9分)
故{bn}是以
为首项,
为公比的等比数列,
∴Sn=
=
-
(
)n.(12分)
2a1+22a2+23a3+…+2n-1an-1=4n-1-1,
∴2nan=4n-4n-1=3•4n-1
∴当n≥2时,an=
| 3 |
| 4 |
又n=1时 2a1=41-1得a1=3/2,
∴an=
| 3 |
| 4 |
(2)∵bn=
| 1 |
| a2n |
| 1 | ||
|
| 4 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
| 1 |
| 4 |
故{bn}是以
| 1 |
| 3 |
| 1 |
| 4 |
∴Sn=
| ||||
1-
|
| 4 |
| 9 |
| 4 |
| 9 |
| 1 |
| 4 |
点评:本题考查数列的通项公式的求法和前n项和的计算,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目