题目内容
数列{an}的通项公式是an=
(n∈N*),若前n项的和为
,则项数为______.
| 1 |
| n(n+1) |
| 10 |
| 11 |
∵an=
=
-
∴Sn=a1+a2+…+an
=1-
+
-
+…+
-
=1-
=
∴
=
∴n=10
故答案为:10
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=a1+a2+…+an
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
∴
| n |
| n+1 |
| 10 |
| 11 |
∴n=10
故答案为:10
练习册系列答案
相关题目