题目内容
设数列{an}前n项和为Sn,若a1=1,Sn=nan-| 3 |
| 2 |
(1)求数列{an}的通项公式.
(2)若bn=
| 1 |
| anan+1 |
| 1 |
| 4 |
| 1 |
| 3 |
(3)是否存在自然数n,使S1+
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
分析:(1)已知Sn,利用an=
求an
(2)由(1)知bn=
=
(
-
),利用裂项求和可得Tn=
=
(1-
),结合数列的单调性可知答案,
(3)存在性问题,假设存在符合条件的n,由(1)知Sn=
-
,
=
-
,
+
+…+
=
若
+
+…+
= 63,即63
=63,解得n的值.
|
(2)由(1)知bn=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| n |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
(3)存在性问题,假设存在符合条件的n,由(1)知Sn=
| 3n2 |
| 2 |
| n |
| 2 |
| Sn |
| n |
| 3n |
| 2 |
| 1 |
| 2 |
| s1 |
| 1 |
| s2 |
| 2 |
| Sn |
| n |
| 3n2+n |
| 4 |
若
| S1 |
| 1 |
| S2 |
| 2 |
| Sn |
| n |
| 3n2+n |
| 4 |
解答:解:(1)当n≥2时,Sn-1=(n-1)an-1-
(n-1)(n-2)
∵an=Sn-Sn-1=nan-(n-1)an-1-
n(n-1)+
(n-1)(n-2)
∵(n-1)an-(n-1)an-1-
(n-1)[n-(n-2)]=0
∴(n-1)an-(n-1)an-1-3(n-1)=0
∵an-an-1=3,∴an=1+(n-1)•3=3n-2.
(2)bn=
=
[
-
]
∴Tn=
[1-
+
-
+
-
++
-
]=
[1-
],
∵Tn单调递增∴Tn≥T1=
[1-
]=
,
又∵
>0,∴Tn<
,综上
≤Tn<
.
(3)∵
±
=1+
(n-1)=
n-
∴S1+
++
=n+
•
=
,∴
=63,∴n=9.
| 3 |
| 2 |
∵an=Sn-Sn-1=nan-(n-1)an-1-
| 3 |
| 2 |
| 3 |
| 2 |
∵(n-1)an-(n-1)an-1-
| 3 |
| 2 |
∴(n-1)an-(n-1)an-1-3(n-1)=0
∵an-an-1=3,∴an=1+(n-1)•3=3n-2.
(2)bn=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 10 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3n+1 |
∵Tn单调递增∴Tn≥T1=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
又∵
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
(3)∵
| Sn |
| n |
| n+(n-1)•3 |
| n |
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴S1+
| S2 |
| 2 |
| Sn |
| n |
| n(n-1) |
| 2 |
| 3 |
| 2 |
| 3n2+n |
| 4 |
| 3n2+n |
| x |
点评:(1)由Sn求an,易漏对n=1的检验(2)主要考查裂项求和(3)存在性问题首先假设n存在,若找出n的值,即存在,若推出矛盾,则不存在n
练习册系列答案
相关题目