题目内容
已知抛物线的焦点恰为双曲线的右焦点,且两曲线交点的连线过点,则双曲线的离心率为( )
A. B. C. D.
已知点,,,设的平分线与相交于,如果,那么等于 .
(本小题满分10分) 已知P(3,2),一直线过点P,
①若直线在两坐标轴上截距之和为12,求直线的方程;
②若直线与x、y轴正半轴交于A、B两点,当面积为12时求直线的方程.
已知函数在处的切线与直线平行.
(1)求实数的值;
(2)若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;
(3)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.
已知函数,若函数处有极值10,则b的值为 .
已知直线与平面,给出下列三个结论:
①若∥,∥,则∥;
②若∥,,则;
③若,∥,则.
其中正确的个数是 ( )
A.0 B.1 C.2 D.3
(12分)在海岸A处 ,发现北偏东450方向,距A处海里B处有一艘走私船,在A处北偏西750方向,距A处2海里的C处的缉私船奉命以海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B处向北偏东方向航行,问缉私船沿什么方向能最快追上走私船,并求出所需时间.
中,若,则的面积为( )
A、 B、 C、1 D、
在⊙O中,直径AB、CD互相垂直,BE切⊙O于B,且BE=BC,CE交AB于F,交⊙O于M,连结MO并延长,交⊙O于N,则下列结论中,正确的是( )
A.CF=FM
B.OF=FB
C.的度数是22.5°
D.BC∥MN