题目内容

(2013•徐州三模)已知曲线C:f(x)=x+
a
x
(a>0)
,直线l:y=x,在曲线C上有一个动点P,过点P分别作直线l和y轴的垂线,垂足分别为A,B.再过点P作曲线C的切线,分别与直线l和y轴相交于点M,N,O是坐标原点.若△ABP的面积为
1
2
,则△OMN的面积为
4
4
分析:由题意易得B的坐标,写出垂线的方程联立y=x可得A坐标,进而可得△ABP的面积,可求a,然后可写出切线的方程,进而可得M、N的坐标,可表示出△OMN的面积,代入a值可得答案.
解答:解:由题意设点P(x0x0+
a
x0
),则B(0,x0+
a
x0
),
又与直线l垂直的直线向斜率为-1,故方程为y-(x0+
a
x0
)=-(x-x0
和方程y=x联立可得x=y=x0+
a
2x0
,故点A(x0+
a
2x0
x0+
a
2x0
),
故△ABP的面积S=
1
2
|x0||x0+
a
2x0
-(x0+
a
x0
)|

=
1
2
|x0||
a
2x0
|
=
1
4
a
=
1
2
,解得a=2,
又因为f(x)=x+
a
x
,所以f′(x)=1-
a
x2
,故切线率为k=1-
a
x02

故切线的方程为y-(x0+
a
x0
)=(1-
a
x02
)(x-x0),
令x=0,可得y=
2a
x0
,故点N(0,
2a
x0
),
联立方程y=x可解得x=y=2x0,即点M(2x0,2x0),
故△OMN的面积为
1
2
•|
2a
x0
||2x0|
=2a=4,
故答案为:4
点评:本题考查利用导数研究曲线的切线方程,涉及三角形的面积和方程组的求解,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网