题目内容
已知函数f(x)=
sin2x+2cos2x+1
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)设△ABC的内角A,B,C对边分别为a,b,c,且c=
,f(C)=3,若
=(sinA,-1)与
=(2,sinB)垂直,求a,b的值.
| 3 |
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)设△ABC的内角A,B,C对边分别为a,b,c,且c=
| 3 |
| m |
| n |
(Ⅰ)∵f(x)=
sin2x+cos2x+2=2sin(2x+
)+2(2分)
令-
+2kπ≤2x+
≤
+2kπ,得-
+kπ≤x≤
+kπ,∴函数f(x)的单调递增区间为[-
+kπ,
+kπ],k∈z,
T=
=π(4分)
(Ⅱ)由题意可知,f(C)=2sin(2C+
)+2=3,∴sin(2C+
)=
,∵0<C<π,∴2C+
=
或2C+
=
,即C=0(舍)或C=
(6分)∵
=(sinA,-1)与
=(2,sinB)垂直,∴2sinA-sinB=0,即2a=b(8分)∵c2=a2+b2-2abcos
=a2+b2-ab=3②(10分)
由①②解得,a=1,b=2.(12分)
| 3 |
| π |
| 6 |
令-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
T=
| 2π |
| 2 |
(Ⅱ)由题意可知,f(C)=2sin(2C+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 3 |
| m |
| n |
| π |
| 3 |
由①②解得,a=1,b=2.(12分)
练习册系列答案
相关题目