题目内容
已知数列{an}的前n项和Sn=1-kan(k>0,n∈N*).(1)用n、k表示an;
(2)数列{bn}对n∈N*均有(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,求证:数列{bn}为等差数列;
(3)在(1)、(2)中,设k=1,bn=n+1,xn=a1b1+a2b2+a3b3+…+anbn,求证:xn<3.
【答案】分析:(1)由前n项的和Sn与an的关系 an+1=Sn+1-Sn,得到数列的递推公式,注意分析k是否为零,再求数列的通项公式.
(2)若(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,即∴(bn+1-bn+2)lg
+(bn+2-bn)lg[(
×(
)2]+(bn-bn+1)lg[(
×(
)4]=0,展开整理后可得bn+2+bn=2bn+1,根据等比数列的定义,可得数列{bn}为等差数列;
(3)将k=1代入,利用错位相减法,求出xn=3-(n+3)
,结合(n+3)
>0,可得xn<3
解答:解:(1)∵Sn=1-kan,
∴S1=a1=1-ka1,
∴a1=
∴an+1=Sn+1-Sn=(1-kan+1)-(1-kan),
∴an+1=kan-kan+1,即 (k+1)an+1=kan,
∵kk≠1解得an+1=
an(1)
∵k>0,a1≠0,由(1)式易知an≠0,n≥1,
∴
=
故该数列是公比为
,首项为
的等比数列,
∴an=
×(
)n-1.
证明:(2)∵(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,
∴(bn+1-bn+2)lg
+(bn+2-bn)lg[(
×(
)2]+(bn-bn+1)lg[(
×(
)4]=0…①
令lg
=m,lg
=n,则m,n均不为0
则①式可化为m(bn+1-bn+2)+(m+2n)(bn+2-bn)+(m+4n)(bn-bn+1)=0
即bn+2+bn=2bn+1,
即数列{bn}为等差数列;
(3)若k=1,an=
×(
)n-1=(
)n,
又∵bn=n+1,
∴xn=
×2+
×3+
×4+…+
(n+1)…①,
∴
xn=
×2+
×3+…+
n+
(n+1)…②
①-②得
xn=1+[
+
+…+
]-
(n+1)=
-

∴xn=3-(n+3)
∵(n+3)
>0
∴xn<3
点评:本题考查的知识点是数列通项公式的求法,等差数列的证明,等差数列的应用,是数列的综合应用,运算量大,容易出错,但解题思路易梳理,属于中档题.
(2)若(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,即∴(bn+1-bn+2)lg
(3)将k=1代入,利用错位相减法,求出xn=3-(n+3)
解答:解:(1)∵Sn=1-kan,
∴S1=a1=1-ka1,
∴a1=
∴an+1=Sn+1-Sn=(1-kan+1)-(1-kan),
∴an+1=kan-kan+1,即 (k+1)an+1=kan,
∵kk≠1解得an+1=
∵k>0,a1≠0,由(1)式易知an≠0,n≥1,
∴
故该数列是公比为
∴an=
证明:(2)∵(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0,
∴(bn+1-bn+2)lg
令lg
则①式可化为m(bn+1-bn+2)+(m+2n)(bn+2-bn)+(m+4n)(bn-bn+1)=0
即bn+2+bn=2bn+1,
即数列{bn}为等差数列;
(3)若k=1,an=
又∵bn=n+1,
∴xn=
∴
①-②得
∴xn=3-(n+3)
∵(n+3)
∴xn<3
点评:本题考查的知识点是数列通项公式的求法,等差数列的证明,等差数列的应用,是数列的综合应用,运算量大,容易出错,但解题思路易梳理,属于中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |