题目内容
数列{an}的通项公式是an=
(n∈N*),若前n项的和为
,则项数为( )
| 1 |
| n(n+1) |
| 10 |
| 11 |
分析:由已知,an=
=
-
,l利用裂项相消法求和后,再求出项数n即可.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:an=
=
-
,(n∈N*)
,前n项的和Sn=(1-
)+(
-
)+…(
-
)=1-
=
当Sn=
时解得n=10
故选C.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
,前n项的和Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
当Sn=
| 10 |
| 11 |
故选C.
点评:本题考查数列求和中的裂项相消法,一般见于求多项分式和的形式.
练习册系列答案
相关题目