题目内容
设f(x)=(x-1)(x-2)(x-3)…(x-2010)则f′(2010)=______.
∵f(x)=(x-1)(x-2)(x-3)…(x-2010),
∴f′(x)=[(x-1)(x-2)(x-3)…(x-2009)]′(x-2010)+[(x-1)(x-2)(x-3)…(x-2009)](x-2010)′
=[(x-1)(x-2)(x-3)…(x-2009)]′(x-2010)+[(x-1)(x-2)(x-3)…(x-2009)]
∴f′(2010)=2009×2008×…×1=2009!
故答案为2009!.
∴f′(x)=[(x-1)(x-2)(x-3)…(x-2009)]′(x-2010)+[(x-1)(x-2)(x-3)…(x-2009)](x-2010)′
=[(x-1)(x-2)(x-3)…(x-2009)]′(x-2010)+[(x-1)(x-2)(x-3)…(x-2009)]
∴f′(2010)=2009×2008×…×1=2009!
故答案为2009!.
练习册系列答案
相关题目