题目内容
(2012•贵州模拟)已知等比数列{an}中,a2=
(2x-
)dx,a3=243,若数列{bn}满足bn=log3an,则数列{
}的前n项和Sn=
.
| ∫ | 6 0 |
| 3 |
| 2 |
| 1 |
| bnbn+1 |
| n |
| 2n+1 |
| n |
| 2n+1 |
分析:先利用微积分基本定理求出a2,进而求出其公比及通项,再利用对数的运算性质及裂项求和即可.
解答:解:∵a2=
(2x-
)dx=(x2-
)
=27,
设等比数列{an}的公比为q,则q=
=
=9,∴a1=
=
=3,∴通项an=3×9n-1=32n-1.
∴bn=log3an=log332n-1=2n-1,∴
=
=
(
-
),
∴Sn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
.
故答案为
.
| ∫ | 6 0 |
| 3 |
| 2 |
| 3x |
| 2 |
| | | 6 0 |
设等比数列{an}的公比为q,则q=
| a3 |
| a2 |
| 243 |
| 27 |
| a2 |
| q |
| 27 |
| 9 |
∴bn=log3an=log332n-1=2n-1,∴
| 1 |
| bnbn+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
故答案为
| n |
| 2n+1 |
点评:熟练掌握等比数列的通项公式、对数的运算性质、裂项求和及微积分基本定理是解题的关键.
练习册系列答案
相关题目