题目内容
已知数列{an}的前n项和Sn和通项an满足
=
(g是常数,且(q>0,q≠1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当q=
时,试证明Sn<
;
(Ⅲ)设函数.f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),使
+
+…+
≥
对n∈N*?若存在,求出m的值;若不存在,请说明理由.
| Sn |
| an-1 |
| q |
| q-1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当q=
| 1 |
| 4 |
| 1 |
| 3 |
(Ⅲ)设函数.f(x)=logqx,bn=f(a1)+f(a2)+…+f(an),使
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| m |
| 3 |
(I )当n≥2时,an=Sn-Sn-1=
(an-1)-
(an-1-1),∴
=q,又由S1=a1=
(a1-1)得a1=q,∴数列an是首项a1=q、公比为q的等比数列,∴an=q•qn-1=qn
(II)a1+a2+…+an=
=
(1-
)<
(III)bn=logqa1+logqa2+…+logqan=logq(a1a2…an)=logqq1+2+n=
∴
+
++
=2(1-
+
-
+
-
),∴2(1-
)≥
即m≤6(1-
)
∵n=1时,[6(1-
)]min=3,∴m≤3,∵m是正整数,∴m的值为1,2,3
| q |
| q-1 |
| q |
| q-1 |
| an |
| an-1 |
| q |
| q-1 |
(II)a1+a2+…+an=
| ||||
1-
|
| 1 |
| 3 |
| 1 |
| 4n |
| 1 |
| 3 |
(III)bn=logqa1+logqa2+…+logqan=logq(a1a2…an)=logqq1+2+n=
| n(n+1) |
| 2 |
∴
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| m |
| 3 |
| 1 |
| n+1 |
∵n=1时,[6(1-
| 1 |
| n+1 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |