题目内容

设数集,且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的长度的最小值是   
【答案】分析:根据题意中集合“长度”的定义,可得M的长度为,N的长度为,分析可得当集合M∩N的长度的最小值时,即重合部分最少时,M与N应分别在区间[0,1]的左右两端,进而计算可得答案.
解答:解:根据题意,M的长度为,N的长度为
当集合M∩N的长度的最小值时,
M与N应分别在区间[0,1]的左右两端,
故M∩N的长度的最小值是+-1=
故答案为
点评:本题考查集合间的交集,应结合交集的意义,分析集合“长度”的定义,进而得到答案.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网