题目内容
已知数列{an}满足a1=
,2-an+1=
(n∈N*),则
=
.
| 4 |
| 3 |
| 12 |
| an+6 |
| n |
| i=1 |
| 1 |
| ai |
| 2•3n-n-2 |
| 4 |
| 2•3n-n-2 |
| 4 |
分析:由a1=
,2-an+1=
(n∈N*),知an+1=
,由此得到
+
=3(
+
),从而推导出
=3n-1-
,由此能求出
.
| 4 |
| 3 |
| 12 |
| an+6 |
| 2an |
| an+6 |
| 1 |
| an+1 |
| 1 |
| 4 |
| 1 |
| an |
| 1 |
| 4 |
| 1 |
| an |
| 1 |
| 4 |
| n |
| i=1 |
| 1 |
| ai |
解答:解:∵a1=
,2-an+1=
(n∈N*),
∴an+1=
,
∴
=
=
+
,
∴
+
=3(
+
),即
=3,
∴
=3n-1,即
+
=3n-1,
∴
=3n-1-
,
∴
=(30+3+32+…+3n-1)-
=
-
=
.
故答案为:
.
| 4 |
| 3 |
| 12 |
| an+6 |
∴an+1=
| 2an |
| an+6 |
∴
| 1 |
| an+1 |
| an+6 |
| 2an |
| 3 |
| an |
| 1 |
| 2 |
∴
| 1 |
| an+1 |
| 1 |
| 4 |
| 1 |
| an |
| 1 |
| 4 |
| ||||
|
∴
| ||||
|
| 1 |
| an |
| 1 |
| 4 |
∴
| 1 |
| an |
| 1 |
| 4 |
∴
| n |
| i=1 |
| 1 |
| ai |
| n |
| 4 |
=
| 1×(1-3n) |
| 1-3 |
| n |
| 4 |
=
| 2•3n-n-2 |
| 4 |
故答案为:
| 2•3n-n-2 |
| 4 |
点评:本题考查数列的前n项和的求法,解题时要认真审题,注意等价转化思想、构造法、等比数列性质的合理运用.
练习册系列答案
相关题目