题目内容

在△ABC中,角A,B,C所对的边分别是a,b,c,a2+c2-b2=
1
2
ac

(Ⅰ)求sin2
A+C
2
+cos2B
的值;
(Ⅱ)若b=2,求△ABC面积的最大值.
分析:(Ⅰ)由余弦定理和题设条件求得cosB的值,进而利用诱导公式和二倍角公式对sin2
A+C
2
+cos2B
化简整理,最后把cosB的值代入即可求得答案.
(Ⅱ)利用(Ⅰ)中cosB的值,可求得sinB的值,进而通过a2+c2-b2=
1
2
ac
.利用基本不等式求得ac的范围,最后利用三角形面积公式,求得三角形面积最大值.
解答:解:(Ⅰ)由余弦定理:cosB=
1
4

sin2
A+C
2
+cos2B=sin2(
π
2
-
B
2
)+2cos2B-1

=cos2
B
2
+2cos2B-1

=
1+cosB
2
+2cos2B-1

=-
1
4


(Ⅱ)由cosB=
1
4
,得sinB=
15
4

∵b=2,a2+c2-b2=
1
2
ac

a2+c2=
1
2
ac+b2=
1
2
ac+4≥2ac
,从而ac≤
8
3

S△ABC=
1
2
acsinB≤
15
3
(当且仅当a=c时取等号)
点评:本题主要考查了余弦定理的应用,同角三角函数的基本关系,二倍角公式的化简求值.考查了学生分析推理和基本运算的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网