题目内容
已知函数f(x)=-x3+3x.
(1)判断f(x)的奇偶性,证明你的结论;
(2)当a在何范围内取值时,关于x的方程f(x)=a在x∈(-1,1]上有解?
(1)判断f(x)的奇偶性,证明你的结论;
(2)当a在何范围内取值时,关于x的方程f(x)=a在x∈(-1,1]上有解?
(1)证明:显然f(x)的定义域是R.设x∈R,
∵f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),
∴函数f(x)是奇函数.
(2)设-1<x1<x2≤1,则f(x1)-f(x2)=(-x13+3x1)-(-x23+3x2)=(x1-x2)[3-(x12+x1x2+x22)]
∵x1<x2,3-(x12+x1x2+x22)>0
∴f(x1)-f(x2)<0,
∴f(x)在(-1,1]上是增函数.
∴函数f(x)=-x3+3x的值域是(-2,2].
∴当a在(-2,2]内取值时,关于x的方程f(x)=a在x∈(-1,1]上有解.
∵f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),
∴函数f(x)是奇函数.
(2)设-1<x1<x2≤1,则f(x1)-f(x2)=(-x13+3x1)-(-x23+3x2)=(x1-x2)[3-(x12+x1x2+x22)]
∵x1<x2,3-(x12+x1x2+x22)>0
∴f(x1)-f(x2)<0,
∴f(x)在(-1,1]上是增函数.
∴函数f(x)=-x3+3x的值域是(-2,2].
∴当a在(-2,2]内取值时,关于x的方程f(x)=a在x∈(-1,1]上有解.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|