题目内容
已知等差数列{an}中,公差d>0,又a2•a3=45,a1+a4=14
(I)求数列{an}的通项公式;
(II)记数列bn=
,数列{bn}的前n项和记为Sn,求Sn.
(I)求数列{an}的通项公式;
(II)记数列bn=
| 1 | an•an+1 |
分析:(I)等差数列{an}中,由公差d>0,a2•a3=45,a1+a4=14,利用等差数列的通项公式列出方程组,求出等差数列的首项和公差,由此能求出数列{an}的通项公式.
(II)由an=4n-3,知bn=
=
(
-
),由此利用裂项求和法能求出数列{bn}的前n项和.
(II)由an=4n-3,知bn=
| 1 |
| an•an+1 |
| 1 |
| 4 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
解答:解:(I)∵等差数列{an}中,公差d>0,a2•a3=45,a1+a4=14,
∴
,
解得
,或
(舍),
∴an=a1+(n-1)d=1+4(n-1)=4n-3.
(II)∵an=4n-3,
∴bn=
=
=
(
-
),
∴数列{bn}的前n项和:
Sn=b1+b2+b3+…+bn
=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(1-
)
=
.
∴
|
解得
|
|
∴an=a1+(n-1)d=1+4(n-1)=4n-3.
(II)∵an=4n-3,
∴bn=
| 1 |
| an•an+1 |
| 1 |
| (4n-3)(4n+1) |
| 1 |
| 4 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
∴数列{bn}的前n项和:
Sn=b1+b2+b3+…+bn
=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 13 |
| 1 |
| 4 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
=
| 1 |
| 4 |
| 1 |
| 4n+1 |
=
| n |
| 4n+1 |
点评:本题考查数列的通项公式和前n项和公式的应用,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目