题目内容

从10人(含甲、乙)中选出4人参加某项公益活动,要求甲、乙二人中至少有1人参加,则不同选法有


  1. A.
    210
  2. B.
    168
  3. C.
    180
  4. D.
    140
D
分析:由题意,事件“甲、乙中至少有1人参加”的对立事件是“两人都不参加”,故本题在求解时可以用排除法,先求出10名同学中挑选4名参加某项公益活动的选法,再计算出甲乙两人都不参数的选法,总数中排除掉甲乙两人都不参数的选法,即可得事件“甲、乙中至少有1人参加”的种数.
解答:10名同学中挑选4名参加某项公益活动,总的选法有C104==210种,
甲乙两人都不参数的选法有C84==70种,
故事件“甲、乙中至少有1人参加”包含的基本事件数是210-70=140.
故选D.
点评:本题考查排列组合及简单计数问题,解题的关键是理解事件“甲、乙中至少有1人参加”,将问题转化为求其对立事件包含的基本事件数,此技巧在计数问题在经常使用,适合于求所研究的事件分类较多,而其对立事件包含的类较少的情况,方便计数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网