题目内容
已知函数f(x)=
x3+2ax2+ax+b(a≠0),A={x∈R|f′(x)=0},B={a|
-
≤a-2,且x1,x2∈A}.
(1)求集合B;
(2)若x∈B,且x∈Z,求证:tan
>
;
(3)比较sin
与sin
的大小,并说明理由.
| 1 |
| 3 |
| a |
| (1+x1)(1+x2) |
| 2 |
| (1-4a-x1)(1-4a-x2) |
(1)求集合B;
(2)若x∈B,且x∈Z,求证:tan
| 1 |
| x |
| 1 |
| x |
(3)比较sin
| 1 | ||
|
| 1 | ||
|
(1)∵函数f(x)=
x3+2ax2+ax+b(a≠0),A={x∈R|f′(x)=0},
∴f′(x)=x2+4ax+a,
∵x1,x2∈A,∴f′(x)=0有两个实根,
∴x1+x2=-4a,x1x2=a,△=16a2-4a>0,
∴a>
,或a<0,
∵(1+x1)(1+x2)=1+(x1+x2)+x1x2=1-4a+a=1-3a,
(1-4a-x1)(1-4a-x2)=1-8a+16a2+(4a-1)(x1+x2)+x1x2
=1-3a.
∵B={a|
-
≤a-2,且x1,x2∈A},
∴
-
=
≤a-2,
∴
≤0,即
≥0,
解得0<a<
,或a≥2.
综上所述,B={a|
<a<
,或a≥2}.
(2)∵x∈Z,且x∈B,∴x≥2,∴
∈(0,
],
令t=
∈(0,
),令R(t)=tant-t,
则R′(t)=
-1=tan2t>0,
∴R(t)在(0,
)上单调递增,
∴R(t)>R(0)=0,∴tant-a>0,
∴tan
>
.
(3)由(2)得x≥2时,tan
>
,
∵
>2,
∴tan
>
,∴tan′(
)>
,
∴
>
,∴2012•sin′(
)>cos′(
),
∴2012•sin′(
)>1-sin′(
),
∴2013sin′(
)>1,
∵sin′(
)>
,
∵
∈(0,
),
∴sin
>sin
.
| 1 |
| 3 |
∴f′(x)=x2+4ax+a,
∵x1,x2∈A,∴f′(x)=0有两个实根,
∴x1+x2=-4a,x1x2=a,△=16a2-4a>0,
∴a>
| 1 |
| 4 |
∵(1+x1)(1+x2)=1+(x1+x2)+x1x2=1-4a+a=1-3a,
(1-4a-x1)(1-4a-x2)=1-8a+16a2+(4a-1)(x1+x2)+x1x2
=1-3a.
∵B={a|
| a |
| (1+x1)(1+x2) |
| 2 |
| (1-4a-x1)(1-4a-x2) |
∴
| a |
| 1-3a |
| 2 |
| 1-3a |
| a-2 |
| 1-3a |
∴
| (a-2)(1-1+3a) |
| 1-3a |
| 3a(a-2) |
| 3a-1 |
解得0<a<
| 1 |
| 3 |
综上所述,B={a|
| 1 |
| 4 |
| 1 |
| 3 |
(2)∵x∈Z,且x∈B,∴x≥2,∴
| 1 |
| x |
| 1 |
| 2 |
令t=
| 1 |
| x |
| π |
| 2 |
则R′(t)=
| cos2t+sin2t |
| cos2t |
∴R(t)在(0,
| π |
| 2 |
∴R(t)>R(0)=0,∴tant-a>0,
∴tan
| 1 |
| x |
| 1 |
| x |
(3)由(2)得x≥2时,tan
| 1 |
| x |
| 1 |
| x |
∵
| 2012 |
∴tan
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 2012 |
∴
sin2
| ||||
cos2
|
| 1 |
| 2012 |
| 1 | ||
|
| 1 | ||
|
∴2012•sin′(
| 1 | ||
|
| 1 | ||
|
∴2013sin′(
| 1 | ||
|
∵sin′(
| 1 | ||
|
| 1 |
| 2013 |
∵
| 1 | ||
|
| π |
| 2 |
∴sin
| 1 | ||
|
| 1 | ||
|
练习册系列答案
相关题目