题目内容
已知
=(sinα,sinβ),
=(cos(α-β),-1),
=(cos(α+β),2),α,β≠kπ+
(k∈Z).
(1)若
∥
,求tanα•tanβ的值;
(2)求
2+
•
的值.
| a |
| b |
| c |
| π |
| 2 |
(1)若
| b |
| c |
(2)求
| a |
| b |
| c |
(1)∵
=(cos(α-β),-1),
=(cos(α+β),2),且
∥
,
∴2cos(α-β)+cos(α+β)=0,即2(cosαcosβ+sinαsinβ)+cosαcosβ-sinαsinβ=0,
∴3cosαcosβ+sinαsinβ=0,又α,β≠kπ+
(k∈Z),
∴tanα•tanβ=-3;
(2)∵
=(sinα,sinβ),
=(cos(α-β),-1),
=(cos(α+β),2),
∴
2+
•
=sin2α+sin2β+cos(α-β)cos(α+β)-2
=sin2α+sin2β+cos2αcos2β-sin2αsin2β-2
=sin2α+(1-sin2α)sin2β+cos2αcos2β-2
=sin2α+cos2αsin2β+cos2αcos2β-2
=sin2α+cos2α(sin2β+cos2β)-2
=sin2α+cos2α+2
=1-2
=-1.
| b |
| c |
| b |
| c |
∴2cos(α-β)+cos(α+β)=0,即2(cosαcosβ+sinαsinβ)+cosαcosβ-sinαsinβ=0,
∴3cosαcosβ+sinαsinβ=0,又α,β≠kπ+
| π |
| 2 |
∴tanα•tanβ=-3;
(2)∵
| a |
| b |
| c |
∴
| a |
| b |
| c |
=sin2α+sin2β+cos2αcos2β-sin2αsin2β-2
=sin2α+(1-sin2α)sin2β+cos2αcos2β-2
=sin2α+cos2αsin2β+cos2αcos2β-2
=sin2α+cos2α(sin2β+cos2β)-2
=sin2α+cos2α+2
=1-2
=-1.
练习册系列答案
相关题目