题目内容
(2012•松江区三模)已知F(x)=f(x+
)-2是R上的奇函数,an=f(0)+f(
)+f(
)+…+f(
)+f(1)(n∈N*),若bn=
,记{bn}的前n项和为Sn,则
Sn=
.
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| an•an+1 |
| lim |
| n→∞ |
| 1 |
| 8 |
| 1 |
| 8 |
分析:根据F(x)=f(x+
)-2是R上的奇函数,可得f(-x+
)+f(x+
)=4,由an=f(0)+f(
)+f(
)+…+f(
)+f(1),倒序相加,可得an=2(n+1),从而可得bn=
=
(
-
),叠加,即可求得数列的和,从而可求极限.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| an•an+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:解:∵F(x)=f(x+
)-2是R上的奇函数,
∴F(-x)=-F(x)
∴f(-x+
)+f(x+
)=4
∴函数f(x)关于点(
,2)对称
∵an=f(0)+f(
)+f(
)+…+f(
)+f(1)
∴2an=4(n+1)
∴an=2(n+1)
∴bn=
=
(
-
)
∴{bn}的前n项和为Sn=
(
-
+
-
+…+
-
)=
(
-
)
∴
Sn=
故答案为:
| 1 |
| 2 |
∴F(-x)=-F(x)
∴f(-x+
| 1 |
| 2 |
| 1 |
| 2 |
∴函数f(x)关于点(
| 1 |
| 2 |
∵an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
∴2an=4(n+1)
∴an=2(n+1)
∴bn=
| 1 |
| an•an+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴{bn}的前n项和为Sn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+2 |
∴
| lim |
| n→∞ |
| 1 |
| 8 |
故答案为:
| 1 |
| 8 |
点评:本题考查函数的性质,考查数列的通项与求和,考查数列的极限,确定数列的通项是关键.
练习册系列答案
相关题目