题目内容

在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2b-c)cosA-acosC=0,
(Ⅰ)求角A的大小;
(Ⅱ)若a=
3
S△ABC=
3
3
4
,试判断△ABC的形状,并说明理由.
(Ⅰ)∵(2b-c)cosA-acosC=0,由正弦定理,
得(2sinB-sinC)cosA-sinAcosC=0,
∴2sinBcosA-sin(A+C)=0,sinB(2cosA-1)=0,
∵0<B<π,∴sinB≠0,∴cosA=
1
2

∵0<A<π,
A=
π
3
..
(Ⅱ)∵S△ABC=
1
2
bcsinA=
3
3
4

1
2
bcsin
π
3
=
3
3
4

∴bc=3①
由余弦定理可知cosA=
b2+c2-3
2bc
=
1
2

∴b2+c2=6,②
由①②得b=c=
3

∴△ABC为等边三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网