题目内容
利用数学归纳法证明“(n+1)(n+2)(n+3)…(n+n)=2n×1×3×…×(2n-1)(n∈N*)”时,从“n=k”变到“n=k+1”时,左边应增乘的是( )
分析:依题意,可写出n=k时成立的等式与n=k+1时成立的等式,二者比较即可得到答案.
解答:解:假设n=k时等式成立,即(k+1)(k+2)(k+3)…(k+k)=2k×1×3×…×(2k-1)(k∈N*),
则当n=k+1时,应有[(k+1)+1][(k+1)+2][(k+1)+3)]•…[(k+1)+(k+1)]=2k+1×1×3×…×[2(k+1)-1](k∈N*),
即(k+2)(k+3)…(k+k)(2k+1)(2k+2)=(k+1)(k+2)(k+3)…(k+k)•
=2k+1×1×3×…×(2k+1)(k∈N*),
∴从“n=k”变到“n=k+1”时,左边应增乘的是
=2(2k+1)=4k+2.
故选D.
则当n=k+1时,应有[(k+1)+1][(k+1)+2][(k+1)+3)]•…[(k+1)+(k+1)]=2k+1×1×3×…×[2(k+1)-1](k∈N*),
即(k+2)(k+3)…(k+k)(2k+1)(2k+2)=(k+1)(k+2)(k+3)…(k+k)•
| (2k+1)(2k+2) |
| k+1 |
∴从“n=k”变到“n=k+1”时,左边应增乘的是
| (2k+1)(2k+2) |
| k+1 |
故选D.
点评:本题考查数学归纳法,理清从“n=k”变到“n=k+1”时左边项数的变化是关键,考查理解与推理运算的能力,属于中档题.
练习册系列答案
相关题目
利用数学归纳法证明不等式
+
+…+
>
(n>1,n?N*)的过程中,用n=k+1时左边的代数式减去n=k时左边的代数式的结果为( )
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+n |
| 1 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|