题目内容
已知各个面都是平行四边形的四棱柱ABCD-A′B′C′D′
(1)化简
+
+
,并在图形中标出其结果;
(2)设M是底面ABCD的中心,N是侧面BCC′B′的对角线BC′上的点,且BN:NC′=3:1,设
=α
+β
+γ
,试求α,β,γ的值.
(1)化简
| 1 |
| 2 |
| AA′ |
| BC |
| 2 |
| 3 |
| AB |
(2)设M是底面ABCD的中心,N是侧面BCC′B′的对角线BC′上的点,且BN:NC′=3:1,设
| MN |
| AB |
| AD |
| AA′ |
分析:(1)如图所示,取线段AA′中点E,则
=
,
=
=
,取D′F=
D′C′,由AB=D′C′,可得
=
=
.即可得出.
(2)利用三角形法则及其平行四边形法则和向量共线定理、向量线段即可得出.
| EA′ |
| 1 |
| 2 |
| AA′ |
| BC |
| AD |
| A′D′ |
| 2 |
| 3 |
| 2 |
| 3 |
| AB |
| 2 |
| 3 |
| D′C′ |
| D′F |
(2)利用三角形法则及其平行四边形法则和向量共线定理、向量线段即可得出.
解答:解:(1)如图所示,
取线段AA′中点E,则
=
,
=
=
,取D′F=
D′C′,∵AB=D′C′,
∴
=
=
.
则
+
+
=
+
+
=
.
(2)∵
=
+
=
+
=
(
+
)+
(
+
)=
+
+
=α
+β
+γ
,
∴α=
,β=
,γ=
.
| EA′ |
| 1 |
| 2 |
| AA′ |
| BC |
| AD |
| A′D′ |
| 2 |
| 3 |
∴
| 2 |
| 3 |
| AB |
| 2 |
| 3 |
| D′C′ |
| D′F |
则
| 1 |
| 2 |
| AA′ |
| BC |
| 2 |
| 3 |
| AB |
| EA′ |
| A′D′ |
| D′F |
| EF |
(2)∵
| MN |
| MB |
| BN |
| 1 |
| 2 |
| DB |
| 3 |
| 4 |
| BC′ |
| 1 |
| 2 |
| DA |
| AB |
| 3 |
| 4 |
| BC |
| CC′ |
| 1 |
| 2 |
| AB |
| 1 |
| 4 |
| AD |
| 3 |
| 4 |
| AA′ |
| AB |
| AD |
| AA′ |
∴α=
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
点评:熟练掌握三角形法则及其平行四边形法则和向量共线定理、向量线段等是解题的关键.
练习册系列答案
相关题目