题目内容

如图,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱的两端点异色.如果只有5种不同的颜色可供选择,那么不同的染色方法共有多少种?

解析:将四棱锥S-ABCD沿侧棱剪开展在同一平面上(如图),

由题设知,点S,A,B所染色互不相同,它们共有5×4×3=60种不同的染色方法.为叙述方便,把5种不同的颜色分别记为1,2,3,4,5.当S,A,B染好色后,不妨设它们分别染色为1,2,3.若C染色2,则D可染3,4,5中的任一种色,有3种染法;若C染色4,则D可染3或5,有2种染法;若C染色5,则D可染3或4,也有2种染法.根据分步原理,总的染色方法有N=60×(3+2+2)=420(种).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网