题目内容

函数f(x)=x2+ax+4,g(x)=bx.它们的交点是P(4,4).
(1)求函数y=f(x)-g(x)的解析式;
(2)设H(x)=f(x+
5
2
)-g(x+
5
2
)
,请判断H(x)的奇偶性.
(3)求函数y=log
1
2
[f(x)-g(x)]
(1)由题得:f(4)=42+4a+4=4?a=-4?f(x)=x2-4x+4;
g(4)=4b=4?b=1?g(x)=x.
∴y=f(x)-g(x)=x2-5x+4.
(2)∴H(x)=f(x+
5
2
)-g(x+
5
2
)=(x+
5
2
)
2
-5×(x+
5
2
)+4
=x2-
9
4

∵(-x)=(-x)2-
9
4
=H(x).
故H(x)是偶函数.
(3)∵x2-5x+4>0?x>4或x<1.
∴y=log 
1
2
[f(x)-g(x)=log 
1
2
 (x2-5x+4),(x>4或x<1).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网