题目内容
已知在△ABC中,角A,B,C的对边为a,b,c向量m=(2cos| C |
| 2 |
| C |
| 2 |
(I)求角C的大小.
(Ⅱ)若a2=b2+
| 1 |
| 2 |
分析:(1)先根据两向量互相垂直等价于二者的数量积等于0,可得到关于cosC的方程,进而得到答案.
(2)先表示出sin(A-B)的表达式,再由正弦和余弦定理将角的关系转化为边的关系后代入即得答案.
(2)先表示出sin(A-B)的表达式,再由正弦和余弦定理将角的关系转化为边的关系后代入即得答案.
解答:解:(I)由m•n=0得2cos2
-2sin2(A+B)=0,
即1+cosC-2(1-cos2C)=0;整理得2cos2C+cosC-1=0
解得cosC=-1(舍)或cosC=
因为0<C<π,所以C=60°
(Ⅱ)因为sin(A-B)=sinAcosB-sinBcosA
由正弦定理和余弦定理可得
sinA=
,sinB=
,cosB=
,cosA=
代入上式得sin(A-B)=
•
-
•
=
又因为a2-b2=
c2,
故sin(A-B)=
=
=
sinC=
所以sin(A-B)=
.
| C |
| 2 |
即1+cosC-2(1-cos2C)=0;整理得2cos2C+cosC-1=0
解得cosC=-1(舍)或cosC=
| 1 |
| 2 |
因为0<C<π,所以C=60°
(Ⅱ)因为sin(A-B)=sinAcosB-sinBcosA
由正弦定理和余弦定理可得
sinA=
| a |
| 2R |
| b |
| 2R |
| a2+c2-b2 |
| 2ac |
| b2+c2-a2 |
| 2bc |
代入上式得sin(A-B)=
| a |
| 2R |
| a2+c2-b2 |
| 2ac |
| b |
| 2R |
| b2+c2-a2 |
| 2bc |
| 2(a2-b2) |
| 4cR |
又因为a2-b2=
| 1 |
| 2 |
故sin(A-B)=
| c2 |
| 4cR |
| c |
| 4R |
| 1 |
| 2 |
| ||
| 4 |
所以sin(A-B)=
| ||
| 4 |
点评:本题主要考查正弦定理和余弦定理的应用.三角函数和向量的综合题是高考的热点问题,要给予重视.
练习册系列答案
相关题目