题目内容
函数在 处取得极小值.
(本小题满分16分)
已知数列是等差数列,是等比数列,且满足,.
(1)若,.
①当时,求数列和的通项公式;
②若数列是唯一的,求的值;
(2)若,,均为正整数,且成等比数列,求数列的公差的最大值.
(本小题满分14分)已知动点和定点, 的中点为.若直线,的斜率之积为常数 (其中为原点,),动点的轨迹为.
(1)求曲线的方程;
(2)曲线上是否存在两点、,使得△是以为顶点的等腰直角三角形?若存在,指出这样的三角形共有几个;若不存在,请说明理由.
下列四个函数中,在闭区间上单调递增的函数是
A. B. C. D.
(本小题满分12分)某班名学生在一次百米测试中,成绩全部介于秒与秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组,下图是按上述分组方法得到的频率分布直方图.
(1)根据频率分布直方图,估计这名学生百米测试成绩的平均值;
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于的概率.
已知椭圆与双曲线的焦点相同,且椭圆上任意一点到两焦点的距离之和为,那么椭圆的离心率等于 ( )
A. B. C. D.[
(本小题满分14分)已知,函数=.
(1)记在区间上的最大值为,求的表达式;
(2)是否存在,使函数在区间内的图象上存在两点,在该两点处的切线互相垂直?若存在,求的取值范围;若不存在,请说明理由.
若变量,满足约束条件,则目标函数的最大值等于 ( )
A.7 B.8 C.10 D.11
已知为坐标原点,为抛物线的焦点,为上一点,若,则的面积为( )
A. B. C. D.