题目内容

在空间四边形ABCD中,M、N、P、Q分别是四边上的点,且满足=k.

(1)求证:M、N、P、Q共面.

(2)当对角线AC=a,BD=b,且MNPQ是正方形时,求AC、BD所成的角及k的值(用a,b表示)


解析:

(1)∵  =k

∴  MQ∥BD,且

∴ 

∴  MQ=BD

又  =k

∴  PN∥BD,且

∴  从而NP=BD

∴  MQNP,MQ,NP共面,从而M、N、P、Q四点共面.

(2)∵ 

∴  ,

∴  MN∥AC,又NP∥BD.

∴  MN与NP所成的角等于AC与BD所成的角.

∵  MNPQ是正方形,∴  ∠MNP=90°

∴  AC与BD所成的角为90°,

又AC=a,BD=b,

∴  MN=a

又  MQ=b,且MQ=MN,

b=a,即k=.

说明:公理4是证明空间两直线平行的基本出发点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网