题目内容

已知函数f(x)=2
2x
-2
的反函数为f-1(x),各项均为正数的两个数列{an},{bn}满足:an=f(Sn),bn=f-1(n),其中Sn为数列{an}的前n项和,n∈N*
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}的前n项和为Tn,且cn=
2
(an+1+2)
bn
,试比较Tn
1
2
的大小.
分析:(1)由f(x)=2
2x
-2可得其反函数f-1(x)=
1
8
(x+2)2(x≥-2)
,于是bn=
1
8
(n+2)2,n∈N*
,由an=f(Sn)=2
2Sn
-2,得Sn=
1
8
(an+2)2
,从而有an=
S1(n=1)
Sn-Sn-1(n≥2)

(2)由(1)知,an=4n-2,bn=
1
8
(n+2)2
,故cn=
2
(an+1+2)•
bn
=
2
(4n+4)•
2
4
(n+2)
=
1
n+1
-
1
n+2

因此Tn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2
1
2
解答:解:(1)由f(x)=2
2x
-2
,得f-1(x)=
1
8
(x+2)2(x≥-2)

bn=
1
8
(n+2)2,n∈N*

an=f(Sn)=2
2Sn
-2
,得Sn=
1
8
(an+2)2

当n=1时,得a1=2;
当n≥2时,Sn-1=
1
8
(an-1+2)2

Sn-Sn-1=
1
8
(an+2)2-
1
8
(an-1+2)2

∴an=
1
8
(an+an-1+4)•(an-an-1
∴(an+an-1)•(an-an-1-4)=0,
∵an>0
∴an-an-1=4(n≥2),又a1=2,
an=4n-2,bn=
1
8
(n+2)2

(2)cn=
2
(an+1+2)•
bn
=
2
(4n+4)•
2
4
(n+2)
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

Tn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2
1
2
点评:本题考查数列与函数的综合,关键是由函数f(x)=2
2x
-2
求得其反函数f-1(x)=
1
8
(x+2)2(x≥-2)
,再转化为数列问题,着重考查分类讨论求数列通项与裂项法求和,突出化归思想,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网