题目内容
已知函数f(x)=2
-2的反函数为f-1(x),各项均为正数的两个数列{an},{bn}满足:an=f(Sn),bn=f-1(n),其中Sn为数列{an}的前n项和,n∈N*.
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}的前n项和为Tn,且cn=
,试比较Tn与
的大小.
| 2x |
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}的前n项和为Tn,且cn=
| ||
(an+1+2)
|
| 1 |
| 2 |
分析:(1)由f(x)=2
-2可得其反函数f-1(x)=
(x+2)2(x≥-2),于是bn=
(n+2)2,n∈N*,由an=f(Sn)=2
-2,得Sn=
(an+2)2,从而有an=
;
(2)由(1)知,an=4n-2,bn=
(n+2)2,故cn=
=
=
-
,
因此Tn=
-
+
-
+…+
-
=
-
<
.
| 2x |
| 1 |
| 8 |
| 1 |
| 8 |
| 2Sn |
| 1 |
| 8 |
|
(2)由(1)知,an=4n-2,bn=
| 1 |
| 8 |
| ||
(an+1+2)•
|
| ||||
(4n+4)•
|
| 1 |
| n+1 |
| 1 |
| n+2 |
因此Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
解答:解:(1)由f(x)=2
-2,得f-1(x)=
(x+2)2(x≥-2),
∴bn=
(n+2)2,n∈N*.
由an=f(Sn)=2
-2,得Sn=
(an+2)2,
当n=1时,得a1=2;
当n≥2时,Sn-1=
(an-1+2)2,
∴Sn-Sn-1=
(an+2)2-
(an-1+2)2,
∴an=
(an+an-1+4)•(an-an-1)
∴(an+an-1)•(an-an-1-4)=0,
∵an>0
∴an-an-1=4(n≥2),又a1=2,
∴an=4n-2,bn=
(n+2)2;
(2)cn=
=
=
=
-
∴Tn=
-
+
-
+…+
-
=
-
<
| 2x |
| 1 |
| 8 |
∴bn=
| 1 |
| 8 |
由an=f(Sn)=2
| 2Sn |
| 1 |
| 8 |
当n=1时,得a1=2;
当n≥2时,Sn-1=
| 1 |
| 8 |
∴Sn-Sn-1=
| 1 |
| 8 |
| 1 |
| 8 |
∴an=
| 1 |
| 8 |
∴(an+an-1)•(an-an-1-4)=0,
∵an>0
∴an-an-1=4(n≥2),又a1=2,
∴an=4n-2,bn=
| 1 |
| 8 |
(2)cn=
| ||
(an+1+2)•
|
| ||||
(4n+4)•
|
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
点评:本题考查数列与函数的综合,关键是由函数f(x)=2
-2求得其反函数f-1(x)=
(x+2)2(x≥-2),再转化为数列问题,着重考查分类讨论求数列通项与裂项法求和,突出化归思想,属于难题.
| 2x |
| 1 |
| 8 |
练习册系列答案
相关题目