题目内容
已知数列{an}满足下列关系:a1=1,an+1=an+| 1 | n(n+1) |
分析:由an+1=an+
可转化为:an+1-an=
=
-
,再用累加法求解.
| 1 |
| n(n+1) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:由an+1=an+
可转化为:
an+1-an=
=
-
∴an=a1 +1-
+
-
+
-
…+
-
∴an=2-
| 1 |
| n(n+1) |
an+1-an=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴an=a1 +1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
∴an=2-
| 1 |
| n |
点评:本题主要考查类等差数列:an+1-an=
求通项时用累加法.
| 1 |
| n(n+1) |
练习册系列答案
相关题目