题目内容
已知函数f(x)=(x2+2x)•e-x,关于f(x)给出下列四个命题:
①x∈(-2,0)时,f(x)<0;
②x∈(-1,1)时,f(x)单调递增;
③函数f(x)的图象不经过第四象限;
④f(x)=
有且只有三个实数解.
其中全部真命题的序号是______.
①x∈(-2,0)时,f(x)<0;
②x∈(-1,1)时,f(x)单调递增;
③函数f(x)的图象不经过第四象限;
④f(x)=
| 1 |
| 2 |
其中全部真命题的序号是______.
①x∈(-2,0)时,x2+2x=x(x+2)<0,而e-x>0,
∴f(x)<0,故①正确;
②∵f′(x)=-e-x(x2+2x)+e-x(2x+2)=-e-x(x2-2),
∴f(x)的单调递增区间为(-
| 2 |
| 2 |
| 2 |
| 2 |
∴x∈(-1,1)时,f(x)单调递增.②正确,
又当x=
| 2 |
| 2 |
| 2 |
当x=-
| 2 |
| 2 |
| 2 |
当x=0时,函数取值0,当x>0时,f(x)>0.
根据函数的单调性及特殊函数值,画出函数f(x)的图象,如图所示,则③函数f(x)的图象不经过第四象限;正确;
④f(x)=
| 1 |
| 2 |
故答案为:①、②、③、④.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|