题目内容

定义在[-1,1]上的奇函数,已知当x∈[-1,0]时的解析式f(x)=
1
4x
-
a
2x
(a∈R)

(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
(1)∵函数f(x)是定义在[-1,1]上的奇函数,
又∵f(x)=
1
4x
-
a
2x
(a∈R)

f(0)=
1
40
-
a
20
=1-a=0
解得a=1
即当x∈[-1,0]时的解析式f(x)=
1
4x
-
1
2x

当x∈[0,1]时,-x∈[-1,0]
f(-x)=
1
4-x
-
1
2-x
=4x-2x=-f(x)
∴f(x)=2x-4x(x∈[0,1])
(2)由(1)得当x∈[0,1]时,f(x)=2x-4x
令t=2x(t∈[1,2])
则2x-4x=t-t2
令y=t-t2(t∈[1,2])
则易得当t=1时,y有最大值0
f(x)在[0,1]上的最大值为0
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网