题目内容
已知数列{an}的各项均为正数,它的前n项和Sn满足Sn=
(an+1) (an+2),并且a2,a4,a9成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=
,Tn是数列{bn}的前n项和,求证:Tn<
.
| 1 |
| 6 |
(1)求数列{an}的通项公式;
(2)设bn=
| 1 |
| (an-n+3)2 |
| 1 |
| 4 |
分析:(1)先利用条件Sn=
(an+1) (an+2),求出数列的首项,再利用当n≥2时,Sn-1=
(an-1+1) (an-1+2),可求数列的通项,利用a2,a4,a9成等比数列,求出满足条件的数列的通项.
(2)利用(1)的结论,先进行放缩,再利用裂项法可求数列{bn}的前n项和,从而得证.
| 1 |
| 6 |
| 1 |
| 6 |
(2)利用(1)的结论,先进行放缩,再利用裂项法可求数列{bn}的前n项和,从而得证.
解答:解:(1)当n=1时,S1=a1=
(a1+1)(a1+2),∴a1=1或a1=2
当n≥2时,Sn-1=
(an-1+1) (an-1+2)①
∵Sn=
(an+1) (an+2)②
∴①-②,并整理得(an+an-1)(an-an-1-3)=0
∵数列{an}的各项均为正数
∴an-an-1=3
当a1=1时,an=3n-2,此时满足a2,a4,a9成等比数列.
当a1=2时,an=3n-1,此时不满足a2,a4,a9成等比数列
∴an=3n-2
(2)根据(1)的结论可得bn=
=
<
=
(
-
)
∴Tn=b1+b2+…+bn<
[(1-
)+(
-
)+…+(
-
)]=
(1-
)<
∴Tn<
| 1 |
| 6 |
当n≥2时,Sn-1=
| 1 |
| 6 |
∵Sn=
| 1 |
| 6 |
∴①-②,并整理得(an+an-1)(an-an-1-3)=0
∵数列{an}的各项均为正数
∴an-an-1=3
当a1=1时,an=3n-2,此时满足a2,a4,a9成等比数列.
当a1=2时,an=3n-1,此时不满足a2,a4,a9成等比数列
∴an=3n-2
(2)根据(1)的结论可得bn=
| 1 |
| (an-n+3)2 |
| 1 |
| 4n2+4n+1 |
| 1 |
| 4n2+4n |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n-1 |
∴Tn=b1+b2+…+bn<
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| 4 |
∴Tn<
| 1 |
| 4 |
点评:本题以数列的前n项和为载体,考查数列通项的求解,考查放缩法,考查裂项法求和,解题的关键是适度放缩,再利用裂项法.
练习册系列答案
相关题目