题目内容
设函数f(x)=ln(1+x)-kx,(k>0)
(1)讨论函数f(x)在[0,+∞)上的单调性,并说明理由;
(2)已知正项数列{an}满足a1=1,an+1=3an+2n(n∈N*),设数列{1+
}的前n项乘积为Tn,求证:Tn<e
.
(1)讨论函数f(x)在[0,+∞)上的单调性,并说明理由;
(2)已知正项数列{an}满足a1=1,an+1=3an+2n(n∈N*),设数列{1+
| 1 |
| an |
| 3 |
| 2 |
分析:(1)求得f′(x)=
,根据其定义域,对k分类讨论即可得f(x)在[0,+∞)上的单调性;
(2)利用{an+2n}是以3为首项,3为公比的等比数列可求得an,从而可得1+
,利用分析法,放缩法即可证得结论.
| -kx+1-k |
| 1+x |
(2)利用{an+2n}是以3为首项,3为公比的等比数列可求得an,从而可得1+
| 1 |
| an |
解答:解:(1)∵f′(x)=
-k=
(k>0),
若f′(x)=0,则x=
-1,又x≥0,
∴当0<k<1时,
-1>0,即f′(x)>0,
∴f(x)在[0,
-1)上单调递增,在(
-1,+∞)上单调递减;
当k=1,f′(x)=
<0,f(x)在[0,+∞)上单调递减;
当k>1,在区间[0,+∞)上f′(x)=
<0恒成立,故f(x)在[0,+∞)上单调递减;
(2)∵an+1=3an+2n(n∈N*),
∴an+1+2n+1=3(an+2n),
∴
=3,又a1+2=3,
∴{an+2n}是以3为首项,3为公比的等比数列,
∴an+2n=3n,
∴an=3n-2n.
∴1+
=1+
,
要证Tn=(1+
)(1+
)…(1+
)<e
,
只要证ln(1+
)+ln(1+
)+…+ln(1+
)<
.
即证ln(1+
)+ln(1+
)+…+ln(1+
)-
<0.①
由(1)知,当k=1时,f(
)=ln(1+
)-
,
∴f(
)+f(
)+…+f(
)=ln(1+
)+ln(1+
)+…+ln(1+
)-(
+
+…+
),
∵{an}为正项数列,由(1)可知k=1时,f(x)在[0,+∞)上单调递减,
>0,
∴f(
)<f(0)=0,
∴ln(1+
)+ln(1+
)+…+ln(1+
)-(
+
+…+
)<0,
即ln(1+
)+ln(1+
)+…+ln(1+
)<(
+
+…+
),②
由①②知,只需证
+
+…+
<
即可.
∵
=1,
=
<
(n≥2),
∴
+
+…+
<1+
+…+
=1+
=1+
-(
)n+1<
成立.
∴ln(1+
)+ln(1+
)+…+ln(1+
)<
.
| 1 |
| 1+x |
| -kx+1-k |
| 1+x |
若f′(x)=0,则x=
| 1 |
| k |
∴当0<k<1时,
| 1 |
| k |
∴f(x)在[0,
| 1 |
| k |
| 1 |
| k |
当k=1,f′(x)=
| -x |
| 1+x |
当k>1,在区间[0,+∞)上f′(x)=
| -kx+1-k |
| 1+x |
(2)∵an+1=3an+2n(n∈N*),
∴an+1+2n+1=3(an+2n),
∴
| an+1+2n+1 |
| an+2n |
∴{an+2n}是以3为首项,3为公比的等比数列,
∴an+2n=3n,
∴an=3n-2n.
∴1+
| 1 |
| an |
| 1 |
| 3n-2n |
要证Tn=(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
只要证ln(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
即证ln(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
由(1)知,当k=1时,f(
| 1 |
| an |
| 1 |
| an |
| 1 |
| an |
∴f(
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
∵{an}为正项数列,由(1)可知k=1时,f(x)在[0,+∞)上单调递减,
| 1 |
| an |
∴f(
| 1 |
| an |
∴ln(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
即ln(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
由①②知,只需证
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
∵
| 1 |
| a1 |
| 1 |
| an |
| 1 |
| 3n-2n |
| 1 |
| 2n |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 22 |
| 1 |
| 2n |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴ln(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
点评:本题考查利用导数研究函数单调性,数列递推关系、放缩法、分析法等知识;同时考查学生的化归与转化能力能力、探索数学交汇问题的解决策略;考查数学建模思想,函数、方程思想的综合应用.
练习册系列答案
相关题目