题目内容
设a1=2,an+1=,bn=||,n∈N*,则数列{bn}的通项公式bn=________.
bn=4·2n-1=2n+1
设数列{an}满足a1=2,an+1=an+3·2n-1.
(1)求数列{an}的通项公式an;
(2)令bn=nan,求数列{bn}的前n项和Sn;
(3)令cn=log2,证明:<1(n≥2).
在数列{an}中,a1=2,an+1=1-an(n∈N*),设Sn为数列{an}的前n项和,则S2006-2S2007+S2008=
A.-3
B.-3
C.3
D.2
设数列{an}中,a1=2,an+1=an+n+1,则通项a100=________.
设a1=2,an+1=,bn=,n∈N*,则数列{bn}的通项公式bn=_______.