题目内容
数学归纳法证明成立时,从到左边需增加的乘积因式是( )
A. B. C. D.
(本小题满分13分)已知A、B为抛物线C:y2 = 4x上的两个动点,点A在第一象限,点B在第四象限l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.
(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;
(Ⅱ)设C、D为直线l1、l2与直线x = 4的交点,求面积的最小值.
若的一个对称中心为,则的值所在区间可以是( )
设a∈R,若函数,有大于零的极值点,则( )
已知集合,,则“”是“A⊆B“的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
下列命题中,正确命题的序号是 .
①函数关于点(1,1)对称;
②定义在R上的奇函数中一定有;
③函数满足;
④△ABC中,,则存在.
已知随机变量,若~,则分别是( )
A.6和2.4 B.2和2.4 C.2和5.6 D.6和5.6
某校本学期迎来了某师范大学数学系甲、乙、丙、丁共4名实习教师,若将这4名实习教师分配到高一年级编号为1,2,3,4的4个班级实习,每班安排1名实习教师,且甲教师要安排在1班或2班,则不同的分配方案有( )
A.6种 B.9种 C.12种 D.24种
(本题满分12分)某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求、、的值;
(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率.