题目内容

抛物线y2=2px(p>0)与双曲线x2-y2=1相交的一个交点为M,双曲线的两焦点分别为F1、F2,若MF1•MF2=
5
4

(I)证明:M点在F1、F2为焦点的椭圆上;
(II)求抛物线方程.
(I)设M(m,n)(m>0),因M点在双曲线x2-y2=1,
根据双曲线的焦半径公式得:
MF1=
2
m+1,MF2=
2
m-1,
MF1•MF2=
5
4

∴(
2
m+1)(
2
m-1)=
5
4
,?m=
3
2
4

∴MF1+MF2=3=定值,即点M到F1、F2的距离之和为定值,且大于|F1F2|,
由椭圆的定义得:M点在F1、F2为焦点的椭圆上.
(II)由(I)得M的坐标为:(
3
2
4
±
2
4

代入抛物线方程y2=2px(p>0)得:2p=
2
12

∴抛物线方程是:y2=
2
12
x
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网