ÌâÄ¿ÄÚÈÝ
ijͬѧÓá¶¼¸ºÎ»°å¡·Ñо¿ÍÖÔ²µÄÐÔÖÊ£º´ò¿ª¡¶¼¸ºÎ»°å¡·Èí¼þ£¬»æÖÆÄ³ÍÖÔ²C1£º
+
=1£¬ÔÚÍÖÔ²ÉÏÈÎÒâ»Ò»¸öµãS£¬¶ÈÁ¿µãSµÄ×ø±ê£¨xs£¬ys£©£¬Èçͼ1£®
£¨1£©Í϶¯µãS£¬·¢ÏÖµ±xs=
ʱ£¬ys=0£»µ±xs=0ʱ£¬ys=1£¬ÊÔÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©¸Ãͬѧ֪Բ¾ßÓÐÐÔÖÊ£ºÈôEΪԲO£ºx2+y2=r2£¨r£¾0£©µÄÏÒABµÄÖе㣬ÔòÖ±ÏßABµÄбÂÊkABÓëÖ±ÏßOEµÄбÂÊkOEµÄ³Ë»ýkAB•kOEΪ¶¨Öµ£®¸ÃͬѧÔÚÍÖÔ²ÉϹ¹ÔìÁ½¸ö²»Í¬µÄµãA¡¢B£¬²¢¹¹ÔìÖ±ÏßAB£¬ÔÙ¹¹ÔìABµÄÖеãE£¬¾¹Û²ìµÃ£ºÑØ×ÅÍÖÔ²C1£¬ÎÞÂÛÔõÑùÍ϶¯µãA¡¢B£¬ÍÖÔ²Ò²¾ßÓдËÐÔÖÊ£®Àà±ÈÔ²µÄÕâ¸öÐÔÖÊ£¬Çëд³öÍÖÔ²C1µÄÀàËÆÐÔÖÊ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨3£©Í϶¯µãA¡¢BµÄ¹ý³ÌÖУ¬Èçͼ2·¢ÏÖµ±µãAÓëµãBÔÚC1ÔÚµÚÒ»ÏóÏÞÖеÄͬһµãʱ£¬Ö±ÏßAB¸ÕºÃΪC1µÄÇÐÏßl£¬Èôl·Ö±ðÓëxÖáºÍyÖáµÄÕý°ëÖá½»ÓÚC£¬DÁ½µã£¬ÇóÈý½ÇÐÎOCDÃæ»ýµÄ×îСֵ£®

| x2 |
| a2 |
| y2 |
| b2 |
£¨1£©Í϶¯µãS£¬·¢ÏÖµ±xs=
| 2 |
£¨2£©¸Ãͬѧ֪Բ¾ßÓÐÐÔÖÊ£ºÈôEΪԲO£ºx2+y2=r2£¨r£¾0£©µÄÏÒABµÄÖе㣬ÔòÖ±ÏßABµÄбÂÊkABÓëÖ±ÏßOEµÄбÂÊkOEµÄ³Ë»ýkAB•kOEΪ¶¨Öµ£®¸ÃͬѧÔÚÍÖÔ²ÉϹ¹ÔìÁ½¸ö²»Í¬µÄµãA¡¢B£¬²¢¹¹ÔìÖ±ÏßAB£¬ÔÙ¹¹ÔìABµÄÖеãE£¬¾¹Û²ìµÃ£ºÑØ×ÅÍÖÔ²C1£¬ÎÞÂÛÔõÑùÍ϶¯µãA¡¢B£¬ÍÖÔ²Ò²¾ßÓдËÐÔÖÊ£®Àà±ÈÔ²µÄÕâ¸öÐÔÖÊ£¬Çëд³öÍÖÔ²C1µÄÀàËÆÐÔÖÊ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨3£©Í϶¯µãA¡¢BµÄ¹ý³ÌÖУ¬Èçͼ2·¢ÏÖµ±µãAÓëµãBÔÚC1ÔÚµÚÒ»ÏóÏÞÖеÄͬһµãʱ£¬Ö±ÏßAB¸ÕºÃΪC1µÄÇÐÏßl£¬Èôl·Ö±ðÓëxÖáºÍyÖáµÄÕý°ëÖá½»ÓÚC£¬DÁ½µã£¬ÇóÈý½ÇÐÎOCDÃæ»ýµÄ×îСֵ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªÖе±xs=
ʱ£¬ys=0£»µ±xs=0ʱ£¬ys=1£¬ÇóµÃa£¬bµÄÖµ£¬½ø¶øµÃµ½ÍÖÔ²µÄ·½³Ì£®
£¨2£©Ö¤·¨1£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬·Ö±ð´úÈëÍÖÔ²·½³ÌºóÁ½Ê½Ïà¼õ£¬¿ÉµÃ½áÂÛ£»
Ö¤·¨2£ºÁªÁ¢Ö±ÏßAB£ºy=kx+bÓëÍÖÔ²C1£º
+y2=1µÄ·½³Ì£¬ÓÃΤ´ï¶¨Àí¿ÉµÃ½áÂÛ£»
£¨3£©µ±µãAÎÞÏÞÇ÷½üÓÚµãBʱ£¬¸îÏßABµÄбÂʾ͵ÈÓÚÍÖÔ²ÉϵÄBµÄÇÐÏßµÄбÂÊk£¬¼´k•kOB=-
£¬k=-
£¬Çó³öÇÐÏßQB·½³Ì£¬½ø¶ø¿ÉµÃÈý½ÇÐÎOCDÃæ»ýµÄ±í´ïʽ£¬ÀûÓûù±¾²»µÈʽ¿ÉµÃ´ð°¸£®
| 2 |
£¨2£©Ö¤·¨1£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬·Ö±ð´úÈëÍÖÔ²·½³ÌºóÁ½Ê½Ïà¼õ£¬¿ÉµÃ½áÂÛ£»
Ö¤·¨2£ºÁªÁ¢Ö±ÏßAB£ºy=kx+bÓëÍÖÔ²C1£º
| x2 |
| 2 |
£¨3£©µ±µãAÎÞÏÞÇ÷½üÓÚµãBʱ£¬¸îÏßABµÄбÂʾ͵ÈÓÚÍÖÔ²ÉϵÄBµÄÇÐÏßµÄбÂÊk£¬¼´k•kOB=-
| 1 |
| 2 |
| x2 |
| 2y2 |
½â´ð£º½â£º£¨1£©¡ßµ±xs=
ʱ£¬ys=0£»µ±xs=0ʱ£¬ys=1£¬
¡àa=
£¬b=1
¡àC1£º
+y2=1-------------------------------------------------------------£¨3·Ö£©
£¨2£©ÈôA£¬BΪÍÖÔ²C1£º
+y2=1ÉÏÏàÒìµÄÁ½µã£¬E£¨x0£¬y0£©ÎªA£¬BÖе㣬
µ±Ö±ÏßABµÄбÂÊkABÓëÖ±ÏßOEµÄбÂÊkOEµÄ³Ë»ýkOE•kAB±ØÎª¶¨Öµ£»-----------£¨5·Ö£©
Ö¤·¨1£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò
£¨2£©-£¨1£©µÃ£º
+(y2+y1)(y2-y1)=0£¬
¡ß½ö¿¼ÂÇбÂÊ´æÔÚµÄÇé¿ö
¡àx0+2y0•kAB=0?kOE•kAB=-
---------------£¨9·Ö£©
Ö¤·¨2£ºÉèAB£ºy=kx+bÓëÍÖÔ²C1£º
+y2=1ÁªÁ¢µÃ£º£¨1+2k2£©x2+4kbx+2b2-2=0£¬x1+x2=-
ËùÒÔx0=-
⇒y0=
⇒kOE=
=-
⇒kOE•kAB=-
-----£¨9·Ö£©
£¨3£©µ±µãAÎÞÏÞÇ÷½üÓÚµãBʱ£¬¸îÏßABµÄбÂʾ͵ÈÓÚÍÖÔ²ÉϵÄBµÄÇÐÏßµÄбÂÊk£¬
¼´k•kOB=-
£¬k=-
ËùÒÔµãB´¦µÄÇÐÏßQB£ºy-y2=-
(x-x2)?
x+y2y=1
Áîx=0£¬yD=
£¬Áîy=0£¬xC=
£¬
ËùÒÔS¡÷OCD=
ÓÖµãBÔÚÍÖÔ²µÄµÚÒ»ÏóÏÞÉÏ£¬ËùÒÔx2£¾0£¬y2£¾0£¬
+y22=1
¡à1=
+y22¡Ý2
=
x2y2
¡àS¡÷OCD=
¡Ý
£¬µ±ÇÒ½öµ±
=y22?x2=
y2=1
ËùÒÔµ±B(1£¬
)ʱ£¬Èý½ÇÐÎOCDµÄÃæ»ýµÄ×îСֵΪ
£¨Ã»Ð´µÈºÅ³ÉÁ¢¿Û1·Ö£©---£¨14·Ö£©
| 2 |
¡àa=
| 2 |
¡àC1£º
| x2 |
| 2 |
£¨2£©ÈôA£¬BΪÍÖÔ²C1£º
| x2 |
| 2 |
µ±Ö±ÏßABµÄбÂÊkABÓëÖ±ÏßOEµÄбÂÊkOEµÄ³Ë»ýkOE•kAB±ØÎª¶¨Öµ£»-----------£¨5·Ö£©
Ö¤·¨1£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò
|
£¨2£©-£¨1£©µÃ£º
| (x2+x1)(x2-x1) |
| 2 |
¡ß½ö¿¼ÂÇбÂÊ´æÔÚµÄÇé¿ö
¡àx0+2y0•kAB=0?kOE•kAB=-
| 1 |
| 2 |
Ö¤·¨2£ºÉèAB£ºy=kx+bÓëÍÖÔ²C1£º
| x2 |
| 2 |
| 4kb |
| 1+2k2 |
ËùÒÔx0=-
| 2kb |
| 1+2k2 |
| b |
| 1+2k2 |
| y0 |
| x0 |
| 1 |
| 2k |
| 1 |
| 2 |
£¨3£©µ±µãAÎÞÏÞÇ÷½üÓÚµãBʱ£¬¸îÏßABµÄбÂʾ͵ÈÓÚÍÖÔ²ÉϵÄBµÄÇÐÏßµÄбÂÊk£¬
¼´k•kOB=-
| 1 |
| 2 |
| x2 |
| 2y2 |
ËùÒÔµãB´¦µÄÇÐÏßQB£ºy-y2=-
| x2 |
| 2y2 |
| x2 |
| 2 |
Áîx=0£¬yD=
| 1 |
| y2 |
| 2 |
| x2 |
ËùÒÔS¡÷OCD=
| 1 |
| x2•y2 |
ÓÖµãBÔÚÍÖÔ²µÄµÚÒ»ÏóÏÞÉÏ£¬ËùÒÔx2£¾0£¬y2£¾0£¬
| x22 |
| 2 |
¡à1=
| x22 |
| 2 |
|
| 2 |
¡àS¡÷OCD=
| 1 |
| x2•y2 |
| 2 |
| x22 |
| 2 |
| 2 |
ËùÒÔµ±B(1£¬
| ||
| 2 |
| 2 |
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊÇÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬Ö±ÏßÓëÔ²×¶ÇúÏߵĹØÏµ£¬»ù±¾²»µÈʽ£¬ÊÇÒ»¸ö×ÛºÏÐÔÇ¿£¬ÔËËãÁ¿´óµÄ½âÎö¼¸ºÎ×ÛºÏÌ⣬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿