题目内容
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
(1)若a=1,求曲线f(x)在点(1,f(1)处的切线方程;
(2)若a<0,求f(x)的单调区间;
(3)若a=-1,函数f(x)的图象与函数g(x)=
x3+
x2+m的图象有3个不同的交点,求实数m的取值范围.
解:∵f(x)=(ax2+x-1)ex,∴f′(x)=(2ax+1)ex+(ax2+x-1)ex=(ax2+2ax+x)ex,
(1)当a=1时,f(1)=e,f′(1)=4e,故切线方程为y-e=4e(x-1),
化为一般式可得4ex-y-3e=0;
(2)当a<0时,f′(x)=(ax2+2ax+x)ex=[x(ax+2a+1)]ex,
若a=
,f′(x)=-
x2ex<0,函数f(x)在R上单调递减,
若
,当x∈(-∞,-2-
)和(0,+∞)时,f′(x)<0,函数f(x)单调递减,
当x∈(-2-
,0)时,f′(x)>0,函数f(x)单调递增;
若
<a<0,当x∈(-∞,0)和(-2-
,+∞)时,f′(x)<0,函数f(x)单调递减,
当x∈(0,-2-
)时,f′(x)>0,函数f(x)单调递增;
(3)若a=-1,f(x)=(-x2+x-1)ex,可得f(x)-g(x)=(-x2+x-1)ex-
x3-
x2-m,
原问题等价于f(x)-g(x)的图象与x轴有3个不同的交点,
即y=m与y=(-x2+x-1)ex-
x3-
x2的图象有3个不同的交点,
构造函数F(x)=(-x2+x-1)ex-
x3-
x2,
则F′(x)=(-2x+1)ex+(-x2+x-1)ex-x2-x
=(-x2-x)ex-x2-x=-x(x+1)ex,令F′(x)=0,可解得x=0或-1,
且当x∈(-∞,-1)和(0,+∞)时,F′(x)<0,F(x)单调递减,
当x∈(-1,0)时,F′(x)>0,F(x)单调递增,
故函数F(x)在x=-1处取极小值F(-1)=
,在x=0处取极大值F(0)=-1,
要满足题意只需∈(
,-1)即可.
故实数m的取值范围为:(
,-1)
分析:(1)把a=1代入,可求得f(1)=e,f′(1)=4e,由点斜式可得方程;(2)求导数,分a=
,
,
<a<0,三种情况讨论;(3)原问题等价于f(x)-g(x)的图象与x轴有3个不同的交点,即y=m与y=(-x2+x-1)ex-
x3-
x2的图象有3个不同的交点,构造函数F(x)=(-x2+x-1)ex-
x3-
x2,求导数可得极值点,数形结合可得答案.
点评:本题考查函数与导数的综合应用,涉及根的个数的判断,属中档题.
(1)当a=1时,f(1)=e,f′(1)=4e,故切线方程为y-e=4e(x-1),
化为一般式可得4ex-y-3e=0;
(2)当a<0时,f′(x)=(ax2+2ax+x)ex=[x(ax+2a+1)]ex,
若a=
若
当x∈(-2-
若
当x∈(0,-2-
(3)若a=-1,f(x)=(-x2+x-1)ex,可得f(x)-g(x)=(-x2+x-1)ex-
原问题等价于f(x)-g(x)的图象与x轴有3个不同的交点,
即y=m与y=(-x2+x-1)ex-
构造函数F(x)=(-x2+x-1)ex-
则F′(x)=(-2x+1)ex+(-x2+x-1)ex-x2-x
=(-x2-x)ex-x2-x=-x(x+1)ex,令F′(x)=0,可解得x=0或-1,
且当x∈(-∞,-1)和(0,+∞)时,F′(x)<0,F(x)单调递减,
当x∈(-1,0)时,F′(x)>0,F(x)单调递增,
故函数F(x)在x=-1处取极小值F(-1)=
要满足题意只需∈(
故实数m的取值范围为:(
分析:(1)把a=1代入,可求得f(1)=e,f′(1)=4e,由点斜式可得方程;(2)求导数,分a=
点评:本题考查函数与导数的综合应用,涉及根的个数的判断,属中档题.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|