题目内容
数列{an}的前n项和为Sn,且Sn=
(an-l),数列{bn}满足bn=
bn-1-
(n≥2),b1=3.
(1)求数列{an}与{bn}的通项公式.
(2)设数列{cn} 满足cn=anlog2(bn+1),其前n项和为Tn,求Tn.
| 3 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)求数列{an}与{bn}的通项公式.
(2)设数列{cn} 满足cn=anlog2(bn+1),其前n项和为Tn,求Tn.
(1)对于数列{an},当n=1时,a1=S1=
(a1-1),解得a1=3.
当n≥2时,an=Sn-Sn-1=
(an-1)-
(an-1-1),化为an=3an-1.
∴数列{an}是首项为3,公比为3的等比数列,
∴an=3×3n-1=3n.
对于数列{bn}满足bn=
bn-1-
(n≥2),b1=3.
可得bn+1=
(bn-1+1).
∴数列{bn+1}是以b1+1=4为首项,
为公比的等比数列.
∴bn+1=4×(
)n-1,化为bn=42-n-1.
(2)cn=3n•lo
=3n(4-2n)
∴Tn=2×31+0+(-2)•33+…+(4-2n)•3n.
3Tn=2×32+0+(-2)×34+…+(6-2n)•3n+(4-2n)•3n+1.
∴-2Tn=6+(-2)•32+(-2)•33+…+(-2)•3n-(4-2n)•3n+1
=6-2×
-(4-2n)•3n+1.
∴Tn=-
+(
-n)•3n+1.
| 3 |
| 2 |
当n≥2时,an=Sn-Sn-1=
| 3 |
| 2 |
| 3 |
| 2 |
∴数列{an}是首项为3,公比为3的等比数列,
∴an=3×3n-1=3n.
对于数列{bn}满足bn=
| 1 |
| 4 |
| 3 |
| 4 |
可得bn+1=
| 1 |
| 4 |
∴数列{bn+1}是以b1+1=4为首项,
| 1 |
| 4 |
∴bn+1=4×(
| 1 |
| 4 |
(2)cn=3n•lo
| g | (42-n-1+1)2 |
∴Tn=2×31+0+(-2)•33+…+(4-2n)•3n.
3Tn=2×32+0+(-2)×34+…+(6-2n)•3n+(4-2n)•3n+1.
∴-2Tn=6+(-2)•32+(-2)•33+…+(-2)•3n-(4-2n)•3n+1
=6-2×
| 32(3n-1-1) |
| 3-1 |
∴Tn=-
| 15 |
| 2 |
| 5 |
| 2 |
练习册系列答案
相关题目