题目内容
已知等差数列{an},公差为2,且S100=10000,则a1+a3+a5+…+a99=( )
| A.2500 | B.5050 | C.5000 | D.4950 |
∵公差d=2,
a2+a4+a6+…+a100=(a1+d)+(a3+d)+(a5+d)+…+(a99+d)
=a1+a3+a5+…+a99+50d=a1+a3+a5+…+a99+100,
又S100=(a2+a4+a6+…+a100)+(a1+a3+a5+…+a99)=10000,
即2(a1+a3+a5+…+a99)+100=10000,
解得:a1+a3+a5+…+a99=4950.
故选D
a2+a4+a6+…+a100=(a1+d)+(a3+d)+(a5+d)+…+(a99+d)
=a1+a3+a5+…+a99+50d=a1+a3+a5+…+a99+100,
又S100=(a2+a4+a6+…+a100)+(a1+a3+a5+…+a99)=10000,
即2(a1+a3+a5+…+a99)+100=10000,
解得:a1+a3+a5+…+a99=4950.
故选D
练习册系列答案
相关题目