题目内容

(理)已知函数f(x)=ln(ax+2)+
1
x
(a>0)
(Ⅰ)若f(x)在x=2处取得极值,求a的值;
(Ⅱ)求f(x)的单调递增区间.
(Ⅰ)f′(x)=
a
ax+2
-
1
x2
(x>-
2
a
),
∵f(x)在x=2处取得极值,
f′(2)=
a
2a+2
-
1
4
=0
,得a=1…(3分)
经检验,a=1时,f(x)x=2处取得极小值,
∴a=1…(4分)
(Ⅱ)由f′(x)=
a
ax+2
-
1
x2
>0及ax+2>0,a>0,
整理得
ax2-ax-2>0(1)
x>-
2
a
(2)

由(1)得x<
a-
a2+8a
2a
或x>
a+
a2+8a
2a
…(7分)
∵a>0,
a2+8a
a2+8a+16
=a+4

-4<a-
a2+8a
,得-
2
a
a-
a2+8a
2a

-
2
a
<x<
a-
a2+8a
2a
或 x>
a+
a2+8a
2a
…(11分)
∴f(x)的单调递增区间是:(-
2
a
a-
a2+8a
2a
),(
a+
a2+8a
2a
,+∞)
…(12分).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网