题目内容
设函数f(x)=kax-a-x(a>0且a≠1)是奇函数.
(1)求常数k的值;
(2)若0<a<1,f(x+2)+f(3-2x)>0,求x的取值范围;
(3)若f(1)=
,且函数g(x)=a2x+a-2x-2mf(x),在上的最小值为-2,求m的值.
(1)求常数k的值;
(2)若0<a<1,f(x+2)+f(3-2x)>0,求x的取值范围;
(3)若f(1)=
| 8 |
| 3 |
(1)∵f(x)为奇函数,
∴f(0)=0,
∴k-1=0,
∴k=1
经验证可知k=1时符合题意.…(4分)
(2)因f(x)是奇函数,
故f(x+2)+f(3-2x)>0可化为f(x+2)>f(2x-3).…(6分)
∵0<a<1,
∴f(x)在R上是单调减函数,…(8分)
∴x+2<2x-3,
∴x>5
∴满足为f(x+2)+f(3-2x)>0的x的取值范围为(5,+∞)…(10分)
(3)∵f(1)=
,
∴a-
=
,即3a2-8a-3=0,
∴a=3(或a=-
舍去).…(12分)
∴g(x)=32x+3-2x-2m(3x-3-x)+2=(3x-3-x)2-2m(3x-3-x)+2
令t=3x-3-x,
∵x≥1,
∴t≥f(1)=
.
∴(3x-3-x)2-2m(3x-3-x)+2=(t-m)2+2-m2.
当m≥
时,2-m2=-2,m=2,2<
,故m=2应舍去;…(14分)
当m<
时,(
)2-2m×
+2=-2,m=
<
.
∴m=
.…(16分)
∴f(0)=0,
∴k-1=0,
∴k=1
经验证可知k=1时符合题意.…(4分)
(2)因f(x)是奇函数,
故f(x+2)+f(3-2x)>0可化为f(x+2)>f(2x-3).…(6分)
∵0<a<1,
∴f(x)在R上是单调减函数,…(8分)
∴x+2<2x-3,
∴x>5
∴满足为f(x+2)+f(3-2x)>0的x的取值范围为(5,+∞)…(10分)
(3)∵f(1)=
| 8 |
| 3 |
∴a-
| 1 |
| a |
| 8 |
| 3 |
∴a=3(或a=-
| 1 |
| 3 |
∴g(x)=32x+3-2x-2m(3x-3-x)+2=(3x-3-x)2-2m(3x-3-x)+2
令t=3x-3-x,
∵x≥1,
∴t≥f(1)=
| 8 |
| 3 |
∴(3x-3-x)2-2m(3x-3-x)+2=(t-m)2+2-m2.
当m≥
| 8 |
| 3 |
| 8 |
| 3 |
当m<
| 8 |
| 3 |
| 8 |
| 3 |
| 8 |
| 3 |
| 25 |
| 12 |
| 8 |
| 3 |
∴m=
| 25 |
| 12 |
练习册系列答案
相关题目