题目内容
已知函数f(x)=sinx(sinx+
cosx),其中x∈[0,
].
(1)求f(x)的最大值和最小值;
(2)若cos(α+
)=
,求f(α)的值.
解:(1)∵已知函数f(x)=sinx(sinx+
cosx)=sin2x+
sinxcosx=
+
=sin(2x-
)+
,
∵x∈[0,
],
∴-
≤2x-
≤
,
故当2x-
=
时,f(x)的最大值为 1+
=
,
故当2x-
=-
时,f(x)的最小值为-
+
=0.
(2)若cos(α+
)=
,
则f(α)=sin(2α-
)+
=-cos[
+(2α-
)]+
=cos2(α+
)+
=2
-
=2×
-
=
.
分析:(1)化简函数f(x)的解析式为sin(2x-
)+
,由x的范围求得-
≤2x-
≤
,从而求得f(x)的最大值和最小值.
(2)利用诱导公式化简f(α)为cos2(α+
)+
=2,再用二倍角公式运算求得结果.
点评:本题主要考查正弦函数的定义域和值域,三角函数的恒等变换及化简求值,属于基础题.
∵x∈[0,
∴-
故当2x-
故当2x-
(2)若cos(α+
则f(α)=sin(2α-
分析:(1)化简函数f(x)的解析式为sin(2x-
(2)利用诱导公式化简f(α)为cos2(α+
点评:本题主要考查正弦函数的定义域和值域,三角函数的恒等变换及化简求值,属于基础题.
练习册系列答案
相关题目