题目内容
已知等差数列{an}的公差为2,其前n项和Sn=pn2+2n(n∈N*).
(I)求p的值及an;
(II)若bn=
,记数列{bn}的前n项和为Tn,求使Tn>
成立的最小正整数n的值.
(I)求p的值及an;
(II)若bn=
| 2 |
| (2n-1)an |
| 9 |
| 10 |
(I)(法一)∵{an}的等差数列∴Sn=na1+
d=na1+
×2=n2+(a1-1)n
又由已知Sn=pn2+2n,
∴p=1,a1-1=2,
∴a1=3,
∴an=a1(n-1)d=2n+1
∴p=1,an=2n+1;
(法二)由已知a1=S1=p+2,S2=4p+4,即a1+a2=4p+4,
∴a2=3p+2,
又此等差数列的公差为2,
∴a2-a1=2,
∴2p=2,
∴p=1,
∴a1=p+2=3,
∴an=a1+(n-1)d=2n+1,
∴p=1,an=2n+1;
(法三)由已知a1=S1=p+2,
∴当n≥2时,an=Sn-Sn-1=pn2+2n-[p(n-1)2+2(n-1)]=2pn-p+2
∴a2=3p+2,
由已知a2-a1=2,
∴2p=2,
∴p=1,
∴a1=p+2=3,
∴an=a1+(n-1)d=2n+1,
∴p=1,an=2n+1;
(II)由(I)知bn=
=
-
∴Tn=b1+b2+b3+…+bn=(1-
)+(
-
)+ (
-
)+…+(
-
)=1-
=
∵Tn>
∴
>
,解得n>
又∵n∈N+
∴n=5
| n(n-1) |
| 2 |
| n(n-1) |
| 2 |
又由已知Sn=pn2+2n,
∴p=1,a1-1=2,
∴a1=3,
∴an=a1(n-1)d=2n+1
∴p=1,an=2n+1;
(法二)由已知a1=S1=p+2,S2=4p+4,即a1+a2=4p+4,
∴a2=3p+2,
又此等差数列的公差为2,
∴a2-a1=2,
∴2p=2,
∴p=1,
∴a1=p+2=3,
∴an=a1+(n-1)d=2n+1,
∴p=1,an=2n+1;
(法三)由已知a1=S1=p+2,
∴当n≥2时,an=Sn-Sn-1=pn2+2n-[p(n-1)2+2(n-1)]=2pn-p+2
∴a2=3p+2,
由已知a2-a1=2,
∴2p=2,
∴p=1,
∴a1=p+2=3,
∴an=a1+(n-1)d=2n+1,
∴p=1,an=2n+1;
(II)由(I)知bn=
| 2 |
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=b1+b2+b3+…+bn=(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 2n |
| 2n+1 |
∵Tn>
| 9 |
| 10 |
∴
| 2n |
| 2n+1 |
| 9 |
| 10 |
| 9 |
| 2 |
∴n=5
练习册系列答案
相关题目