题目内容
数列{an}中,an=| 1+2+3+…+n |
| n |
| 1 |
| anan+1 |
分析:由等差数列求和公式求数列an的通项公式得an=
,代入bn=
得到bn=4(
-
),然后用裂项求和得到bn的前n项和为
.
| n+1 |
| 2 |
| 1 |
| anan+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 2n |
| n+2 |
解答:解:设数列bn的前n项和为Sn
由题意可得an=
=
=
∴an+1=
∴bn=
=
=
=4(
-
)
∴Sn=b1+b2+…+bn-1+bn
=4(
-
+
-
…+
-
+
-
)
=4(
-
)
=
∴bn=
的前n项和为
.
由题意可得an=
| 1+2+3+…+n |
| n |
| ||
| n |
| n+1 |
| 2 |
∴an+1=
| n+2 |
| 2 |
∴bn=
| 1 |
| anan+1 |
| 1 | ||||
|
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Sn=b1+b2+…+bn-1+bn
=4(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=4(
| 1 |
| 2 |
| 1 |
| n+2 |
=
| 2n |
| n+2 |
∴bn=
| 1 |
| anan+1 |
| 2n |
| n+2 |
点评:本题考查等差数列求和公式,重点考查是利用通项变形将通项公式裂成两项的差,通过相加过程中的相互抵消,最后只剩下有限的几项的和.
练习册系列答案
相关题目