题目内容
已知函数y=sin2x+2sinxcosx+3cos2x,x∈R.
(1)函数y的最小正周期;
(2)函数y的递增区间.
(1)函数y的最小正周期;
(2)函数y的递增区间.
(1)y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+sin2x+2cos2x
=1+sin2x+(1+cos2x)
=sin2x+cos2x+2
=
sin(2x+
)+2,
∴函数的最小正周期T=
=π.
(2)由2kπ-
≤2x+
≤2kπ+
,得kπ-
≤x≤kπ+
(k∈Z),
∴函数的增区间为[kπ-
,kπ+
](k∈Z).
=(sin2x+cos2x)+sin2x+2cos2x
=1+sin2x+(1+cos2x)
=sin2x+cos2x+2
=
| 2 |
| π |
| 4 |
∴函数的最小正周期T=
| 2π |
| 2 |
(2)由2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
∴函数的增区间为[kπ-
| 3π |
| 8 |
| π |
| 8 |
练习册系列答案
相关题目