题目内容
已知数列{an}的前n项和为Sn,且Sn=1-an(n∈N*).
(1)试求{an}的通项公式;
(2)若bn=
(n∈N*),试求数列{bn}的前n项和Tn.
(1)试求{an}的通项公式;
(2)若bn=
| n |
| an |
(1)n=1时,a1=1-a1,a1=
,
∵Sn=1-an(n∈N*)①,∴Sn+1=1-an+1②,
②-①得an+1=-an+1+a n,∴an+1=
a n,
∴数列{an}是首项为a1=
,公比q=
的等比数列,
∴an=
•(
)n-1=(
)n
(2)bn=
=n•2n(n∈N*)
∴Tn=1×2+2×22+3×23+…+n×2n,③
2Tn=1×22+2×23+3+3×23+…+n×2n+1,④
③-④得,-Tn=2+22+23+…+2n-n×2 n+1③,
=
-n×2 n+1③,
整理得Tn=(n-1)2 n+1+2
| 1 |
| 2 |
∵Sn=1-an(n∈N*)①,∴Sn+1=1-an+1②,
②-①得an+1=-an+1+a n,∴an+1=
| 1 |
| 2 |
∴数列{an}是首项为a1=
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)bn=
| n |
| an |
∴Tn=1×2+2×22+3×23+…+n×2n,③
2Tn=1×22+2×23+3+3×23+…+n×2n+1,④
③-④得,-Tn=2+22+23+…+2n-n×2 n+1③,
=
| 2(1-2n) |
| 1-2 |
整理得Tn=(n-1)2 n+1+2
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |