ÌâÄ¿ÄÚÈÝ
14£®ÍÖÔ²¦££º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬É϶¥µãΪA£¬ÒÑÖªÍÖÔ²¦£¹ýµãP£¨$\frac{4}{3}$£¬$\frac{b}{3}$£©£¬ÇÒ$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}P}$=0£®£¨1£©ÇóÍÖÔ²¦£µÄ·½³Ì£»
£¨2£©ÈôÍÖÔ²ÉÏÁ½µãC¡¢D¹ØÓÚµãM£¨1£¬$\frac{1}{2}$£©¶Ô³Æ£¬Çó|CD|£®
·ÖÎö £¨1£©´úÈëµãP£¬ÇóµÃa2=2£¬ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬½áºÏa£¬b£¬cµÄ¹ØÏµ£¬½â·½³Ì¼´¿ÉµÃµ½c£¬¼´ÓÐÍÖÔ²·½³Ì£»
£¨2£©·½·¨Ò»¡¢ÔËÓõã²î·¨£¬Éè³öC£¬DµÄ×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬×÷²îÔÙÓÉÖеã×ø±ê¹«Ê½£¬ÇóµÃCDµÄбÂÊ£¬µÃµ½Ö±ÏßCDµÄ·½³Ì£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½£»
·½·¨¶þ¡¢ÔËÓöԳƵķ½·¨£¬Éè³öC£¬DµÄ×ø±ê£¬ÔÙ×÷²î£¬¿ÉµÃÖ±ÏßCDµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½£®
½â´ð ½â£º£¨1£©ÓÉÓÚÍÖÔ²¦£¹ýµã$P£¨\frac{4}{3}£¬\frac{b}{3}£©$£¬
¼´ÓÐ$\frac{16}{{9{a^2}}}+\frac{1}{9}=1$£¬½âµÃa2=2£¬
ÓÖ$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}P}$=0£¬
ÔòÒÔAPΪֱ¾¶µÄԲǡºÃ¹ýÓÒ½¹µãF2£¬
ÓÖ$P£¨\frac{4}{3}£¬\frac{b}{3}£©£¬{F_2}£¨c£¬0£©£¬A£¨0£¬b£©$£¬
µÃ$\overrightarrow{{F_2}A}=£¨-c£¬b£©$£¬$\overrightarrow{{F_2}P}=£¨\frac{4}{3}-c£¬\frac{b}{3}£©$£¬
¼´ÓÐ$-c£¨\frac{4}{3}-c£©+\frac{b^2}{3}=0$£¬
¶øb2=a2-c2=2-c2£¬ËùÒÔc2-2c+1=0µÃc=1£¬
¹ÊÍÖÔ²¦£µÄ·½³ÌÊÇ$\frac{x^2}{2}+{y^2}=1$£®
£¨2£©·¨Ò»£ºÉèµãC¡¢DµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬
Ôò$x_1^2+2y_1^2=2£¬x_2^2+2y_2^2=2$£¬ÇÒx1+x2=2£¬y1+y2=1£¬
ÓÉ$x_1^2+2y_1^2=2£¬x_2^2+2y_2^2=2$£¬
µÃ£º£¨x1+x2£©£¨x1-x2£©+2£¨y1+y2£©£¨y1-y2£©=0£¬
¼´$2£¨{x_1}-{x_2}£©+2£¨{y_1}-{y_2}£©=0⇒\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=-1$£¬
ËùÒÔCDËùÔÚÖ±Ïߵķ½³ÌΪ$y=-x+\frac{3}{2}$£¬
½«$y=-x+\frac{3}{2}$£¬´úÈëx2+2y2=2µÃ$3{x^2}-6x+\frac{5}{2}=0$£¬
¼´ÓÐx1+x2=2£¬x1x2=$\frac{5}{6}$£®
$|CD|=\sqrt{2}|{x_1}-{x_2}|=\sqrt{2}•\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}=\sqrt{2}•\sqrt{4-\frac{10}{3}}=\frac{{2\sqrt{3}}}{3}$£®
·¨¶þ£ºÉèµãC¡¢DµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨2-x1£¬1-y1£©£¬
Ôò$x_1^2+2y_1^2=2£¬{£¨2-{x_1}£©^2}+2{£¨1-{y_1}£©^2}=2$£¬
Á½µÈʽÏà¼õµÃ${y_1}=-{x_1}+\frac{3}{2}$£¬
½«$y=-x+\frac{3}{2}$£¬´úÈëx2+2y2=2µÃ$3{x^2}-6x+\frac{5}{2}=0$£¬
ÔòÓÐ$|CD|=\sqrt{2}|{x_1}-{x_2}|=\sqrt{2}•\sqrt{{{£¨{x_1}+{x_2}£©}^2}-4{x_1}{x_2}}=\sqrt{2}•\sqrt{4-\frac{10}{3}}=\frac{{2\sqrt{3}}}{3}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²·½³ÌµÄÔËÓã¬Í¬Ê±¿¼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍµã²î·¨¡¢ÏÒ³¤¹«Ê½µÄÔËÓ㬿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮