题目内容
分析:作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y=x2在区间[0,1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.
解答:解:∵曲线y=x2和直线L:x=2的交点为A(1,1),
∴曲线C:y=x2、直线L:x=1与x轴所围成的图形面积为:
S=
x2dx=
x3
=
.
故选C.
∴曲线C:y=x2、直线L:x=1与x轴所围成的图形面积为:
S=
| ∫ | 1 0 |
| 1 |
| 3 |
| | | 1 0 |
| 1 |
| 3 |
故选C.
点评:本题考点是定积分在求面积中的应用,考查了作图的能力及利用积分求面积,解题的关键是确定出被积函数与积分区间,熟练掌握积分的运算,
练习册系列答案
相关题目